Самый мощный электромотор для лодки

Какой электромотор для лодки считать самым мощным? Тот, который потребляет большую мощность от аккумуляторной батареи? Или может быть тот, который легко толкает вперед даже тяжелую лодку, потребляет маленький ток и долго работает от аккумуляторов?

Какая бывает мощность

Различные виды мощности на лодочном двигателе
Гребной винт преобразует энергию двигателя в силу, которая преодолевая сопротивления воды и воздуха двигает лодку вперед с выбранной скоростью. Часть энергии при этом теряется и мощность, идущая на движение судна, всегда меньше той, что потребляет двигатель. Rt — сопротивление воды; Pe — эффективная (буксировочная) мощность; Pt — мощность на винте; Pв — мощность на валу; Pb — мощность двигателя. T — тяга; V — скорость

Единый критерий для сравнения важен. Мощности измеренные в разных местах существенно отличаются друг от друга. Мотор, развивающий на валу 4 л. с., на винте выдает всего 1 л.с.
Производители лодочных моторов используют разные виды мощности. Встречаются мощность на валу, потребляемая мощность и даже тяга. Поэтому прежде чем сравнивать различные электромоторы для лодок нужно привести имеющиеся данные к «общему знаменателю»

Мощность потребляемая, на валу и на винте

Потребляемая мощность – часто используется как характеристика электродвигателя для лодки (мощность = ток х напряжение). Выражается в Ваттах или лошадиных силах. Производители бензиновых или дизельных лодочных моторов этот вид мощности не используют. Однако для двигателя внутреннего сгорания потребляемую мощность также можно посчитать, если умножить теплотворную способность топлива на его расход.

Виды мощности, используемые производителями бензиновых и электрических моторов для лодок
Виды мощности, используемые производителями бензиновых и электрических лодочных двигателей

Мощность на валу –  используют производители подвесных бензиновых лодочных моторов. Этот вид мощности считается также как у автомобиля (мощность = крутящий момент х угловая скорость). Измеряется в лошадиных силах или ваттах. Мощность на валу учитывает потери в редукторе, но не учитывает потери на винте, которые составляют от 20 до 70%.

Мощность на винте –  более ста лет служит общепринятой характеристикой двигателя в судостроении. Учитывает все потери мощности и определяет энергию, передаваемую лодке двигателем.

Тяга лодочного электромотора

Во время вращения винта на поверхностях лопастей возникает подъемная сила. Составляющая этой силы направленная по оси движения лодки называется упором или тягой. Она характеризует ту часть подъемной силы, которая толкает судно вперед.

Полезная мощность, производимая лодочным винтом, равна его тяге, умноженной на текущую скорость лодки. В характеристиках электромоторов производители всегда указывают максимальное значение тяги. Сделать по ней вывод о мощности электромотора на винте без установки датчиков и проведения измерений нельзя.Тяга лодочного электромотора

Тягу определяют в ходе испытаний, во время которых лодку соединяют с пирсом динамометром и заставляют электромотор толкать ее вперед. Проверку проводят на спокойной воде, в безветренную погоду, на достаточной глубине и расстоянии от берега. Для лодочных электромоторов значение тяги чаще всего указывают в фунтах силы (lbs).

Наименование Torqeedo Travel 1003 СS Minn Kota Traxxis 55
Лодочный электромотор Torqeedo Travel 1003 CS Электромотор для лодки Minn Kota Traxxis
Потребляемая мощность, Вт 1000 600
Рабочее напряжение 29,6 12
Мощность на винте, Вт 480 -
Тяга, lbs * 68 (* 102 lbs по методике производителей троллинговых электромоторов) 55
Полный КПД, % 48 -
Вес без аккумуляторов, кг 8,9 13,6
Вес с аккумулятором, кг 14,9 -
Максимальный вес лодки, кг 1500 1500
ЗАКАЗАТЬ ЗАКАЗАТЬ

Бензиновый и электрический моторы для лодки

Лодочные электромоторы могут развивать ту же тягу, что и двигатели внутреннего сгорания обладая при этом значительно меньшей мощностью на валу. Это происходит благодаря различной форме кривых крутящего момента электрического и бензинового двигателей. У двигателя внутреннего сгорания график крутящего момента имеет выраженный пик, из-за которого максимальный момент доступен только в ограниченном диапазоне оборотов вала. Зависимость крутящего момента от оборотов у электродвигателя гораздо более плоская и его достаточно при любой частоте вращения

Зависимость крутящего момента типичных электрического, дизельного и бензинового двигателей от частоты вращения
Максимальный крутящий момент и мощность – это важные характеристики двигателя. Момент определяет способность быстро ускоряться и тянуть груз, а мощность (приведенная к весу) максимальную скорость. Крутящий момент зависит от числа оборотов вала. У разных типов двигателей эта зависимость имеет свой вид. У электродвигателя скорость преобразования энергии от аккумуляторной батареи не связана с частотой вращения вала. В двигателях внутреннего сгорания с ростом числа оборотов давление и температура возрастают и достигают оптимального сочетания при определенной частоте вращения на которую и приходится пик крутящего момента.

Пологая характеристика момента позволяет устанавливать на лодочные электромоторы более эффективные гребные винты. КПД гребного винта у некоторых электромоторов для небольших лодок в три раза выше, чем у подвесных бензиновых двигателей того же класса.

Чтобы пользователю было проще сравнивать подвесные бензиновые моторы, для которых указана мощность на валу с электрическими двигателями, компания Torqeedo ввела понятие «эквивалентная мощность». Лодочный электромотор Torqeedo с маркировкой «3 HP equivalent» обеспечивает на винте ту же мощность, что и подвесной бензиновый двигатель мощностью 3 л.с. Хотя при этом потребляемая мощность и мощность на валу у электромотора могут быть существенно ниже.

Torqeedo Cruise 2.0 Типичный лодочный электромотор Подвесной бензиновый мотор 5 л.с
Потребляемая мощность 2000 Вт (2,7 л.с) 2000 Вт (2,7 л.с)
Мощность на валу  — 3700 Вт (5л.с)
Мощность на винте 1112 Вт (1,5 л.с) 660 Вт (0,9 л.с) 995 Вт (1,4 л.с)

Потери мощности в лодочном электромоторе

Общая эффективность силовой установки на судне с двигателем внутреннего сгорания 5- 15%. Для лодки с электромотором такой показатель – непозволительная роскошь. Считается, что лодочный электродвигатель работает эффективно, если с учетом потерь на винте его КПД около 50 %. При этом КПД электромотора должен быть не менее 80%, а винта не мене 63%.

Сравнение КПД и мощности электрических и бензиновых лодочных двигателей
Сравнение эффективности и мощности лодочных электромоторов и небольших подвесных бензиновых двигателей. Полный КПД бензинового двигателя — 5-15%. КПД типичных электромоторов для лодок около 20%, лодочных электромоторов Torqeedo около 50%

Напряжение в системе

Потери мощности пропорциональны сопротивлению проводника и квадрату протекающего через него тока. Если ток возрастает вдвое, потери возрастают в четыре раза. Если ток растет в десять раз, потери увеличиваются в сто. Уменьшить ток и потери можно, если повысить напряжение в цепи.

Общепринятое на сегодня напряжение мощных лодочных электродвигателей 48 вольт, но для небольших лодок подходят и 24-вольтовые электромоторы. При силе тока  50 А максимальная мощность электромотора в 12-вольтовой системе составит 600 Ватт, а в 24 Вольтовой – 1200 Ватт

Второй способ снизить потери в цепи постоянного тока – это увеличить сечение кабеля. Правильно подобранный кабель повышает эффективность и безопасность электрической системы, устраняет локальный перегрев и снижает потери энергии. Например,  максимальный ток лодочного электромотора Torqeedo Cruise 2.0 более 80 А (потребляемая мощность 2000 Вт при 24 В). Если подключать электромотор к аккумуляторам, находящимся от него на расстоянии пять метров, кабелем сечением 25-35 мм², то потери составит 17 Вт, что соответствует 0,8% от общей мощности или 3,4 Вт на метр кабеля.

Электродвигатель

Электродвигатели, используемые в лодочных электромоторах, можно разделить по нескольким критериям:

  • Способ создания переменного магнитного поля
  • Способ возбуждение основного магнитного потока
  • Конструкция
Ротор, щеточный узел и щетки лодочного электромотора Minn Kota

Переменное магнитное поле в электродвигателе создают с помощью механической или электронной коммутации. В классическом двигателе неподвижные щетки скользят по расположенным на валу кольцам и переключают направление тока в обмотках в зависимости от положения ротора. Щеточный узел преобразует постоянный ток от внешнего источника в переменный и служит механическим инвертором.  Со временем щетки стираются, начинают искрить и в месте контакта с кольцами возникает дополнительное сопротивление. Потери снижают КПД двигателя и увеличивают потребляемый им ток.

В бесколлекторном двигателе переменное поле создает ток, получаемый от высокочастотного DC-AC конвертера. Потерь из-за щеток у бесколлекторных двигателей нет, КПД выше и их не нужно обслуживать.

Создать первичный магнитный поток в двигателе можно двумя способами – с помощью постоянных магнитов или током в обмотках возбуждения. Двигатели с электромагнитным возбуждением дешевле, но по сравнению с моделями на постоянных магнитах тяжелее и занимают больше места. Потери в катушках возбуждения снижают КПД двигателя и увеличивают его энергопотребление.

Разрез лодочного электромотора Torqeedo Travel 1003 CS
Разрез лодочного электромотора Torqeedo Travel 1003 CS. Слева — колокол внешнего ротора с постоянными магнитами, внутри которого расположен статор с обмотками. Зеленая плата в центре — электронный коммутатор, который заменяет щетки и кольца

Конструктивно бесколлекторные двигатели бывают с внутренним или внешним ротором. В традиционном варианте ротор вращается внутри статора. За счет этого двигатель лучше охлаждается, однако создает относительно небольшой крутящий момент.

В современных двигателях ротор находится снаружи статора. На роторе располагают магниты, а на неподвижном статоре обмотки, которые создают переменное магнитное поле.  Крутящий момент у двигателя с внешним ротором вдвое сильнее.  Поскольку площадь поверхности внешнего ротора больше на нем помещается вдвое больше магнитов, что дополнительно увеличивает крутящий момент. Момент возрастает еще сильнее, когда вместо обычных ферритовых используют редкоземельные магниты.

В мощные лодочные электромоторы устанавливают синхронный бесколлекторный двигатель на постоянных магнитах с внешним ротором. Он создает большую тягу, чем двигатель обычного троллингового электромотора, меньше весит, потребляет меньший ток и дольше работает от аккумулятора

Винт

Высокий КПД имеет винт с большим диаметром, шагом и низкой скоростью вращения. Однако с таким винтом может работать только мотор, развивающий высокий крутящий момент. При этом разница между наибольшим и наименьшим значениями момента у двигателя должна быть минимальной.

Большинство винтов бензиновых и электрических моторов, используемых на небольших лодках, созданы на основе испытаний проведенных еще в 1940–1960-х годах прошлого века. Общие принципы проектирования, появившиеся тогда, систематизированы в виде таблиц и графиков и применяются производителями до сих пор.

Другой подход используют при разработке винтов для электромоторов Torqeedo . Сначала на компьютере создают трехмерную модель, а затем шаг и кривизну профиля винта оптимизируют для каждого сечения с учетом изменяющихся вдоль диаметра условий обтекания потоком воды.  Винты этого типа называют винтами с переменным шагом и профилем. Их потери меньше, а КПД выше.

Аккумулятор для электромотора

Оптимальный источник энергии для современного лодочного электромотора – это литиевая аккумуляторные батарея. По сравнению с другими типами аккумуляторов литиевые хранят больше энергии, обеспечивают высокий разрядный ток без потери емкости и выдерживают гораздо больше циклов заряда-разряда.

 Torqeedo Travel 1003 СS Лодочный электромотор Torqeedo Travel 1003 CS
Потребляемая мощность, Вт 1000
Мощность на винте, Вт 480
Сопоставимый по мощности на винте подвесной бензиновый двигатель, л.с 3
Сопоставимый по тяге подвесной бензиновый двигатель, л.с 4
Максимальный общий КПД, % 48
Номинальное напряжение, В 29,6
Статическая тяга, lbs 68
Статическая тяга, рассчитанная по методике производителей троллинговых электромоторов, lbs 102
Емкость встроенного литиевого аккумулятора, Втч 915
Общий вес, кг 14,9
Вес без аккумуляторов, кг 8,9
Вес встроенного аккумулятора, кг 6,0
Дейдвуд, см 62,5
Стандартный винт (v – скорость км/ч при p-мощности Вт) v9/p790
Максимальная скорость винта, об/мин 1200
Управление Румпель
Передний/задний ход. Переменная скорость Да
Встроенный компьютер с дисплеем и GPS Да
ЗАКАЗАТЬ
Скорость в км/ч Запас хода, км Продолжительность движения, ч
Медленная скорость 3,7 64,8 17:30
50% 5,5 33,3 06:00
Полный ход 9,2 8,4 00:55
Скорость и запас хода зависят от типа лодки, винта и условий эксплуатации. Приводимые значения не служат официальной гарантией

Однако в отличии от свинцово-кислотных, литиевым аккумуляторам нужна сложная электронная система контроля и балансировки. При этом выход из строя компонентов BMS сам по себе создает проблему для безопасности аккумулятора. Чтобы исключить непредвиденные ситуации критически важные детали BMS в литиевых лодочных аккумуляторов дублируют. Также как это делается в автомобильной, аэрокосмической или медицинской технике.

При промышленном производстве лодочных литиевых аккумуляторов используют только цилиндрические ячейки в металлической оболочке, которые сваривают между собой, а затем устанавливают в пластиковый или металлический корпус. У качественных аккумуляторных батарей корпус имеет класс защиты IP67. Водонепроницаемый корпус защищает платы BMS от коррозии и не дает образовываться электролитическому газу.

Удобный лодочный электромотор

Высокие технические характеристики лодочного электромотора легче оценить, когда им удобно пользоваться. Современным электродвигателем на лодке управляет микропроцессор, поэтому вся информация о его состоянии существует в цифровом виде и ее легко представить пользователю.Органы управления на лодочном электромоторе Torqeedo Travel 1003 CSЧастью общей системы управления лодочным электромотором является BMS. Она знает об аккумуляторе все. Какой заряд в нем остался? Какова его температура? Какой ток он отдает? Собираемыми данными BMS  делится с другими компонентами системы, которые используют их для расчета текущей скорости лодки, потребляемой мощности и оставшегося запаса хода.

Пользователь получает обработанную  бортовым компьютером информацию на дисплее. Оставшийся запас хода в милях или километрах изменяется в режиме реального времени. Когда заряд аккумулятора подходит к концу компьютер издает звуковой сигнал  и предупреждает, что пришло время разворачивать лодку и возвращаться на берег или уменьшить скорость, чтобы увеличить дальность поездки.

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

captcha